Model Based Pose Estimator Using Linear-Programming

نویسندگان

  • Moshe Ben-Ezra
  • Shmuel Peleg
  • Michael Werman
چکیده

Given a 3D object and some measurements for points in this object, it is desired to find the 3D location of the object. A new model based pose estimator from stereo pairs based on linear programming (LP) is presented. In the presence of outliers, the new LP estimator provides better results than maximum likelihood estimators such as weighted least squares, and is usually almost as good as robust estimators such as LMEDS. In the presence of noise the new LP estimator provides better results than robust estimators such as LMEDS, and is slightly inferior to maximum likelihood estimators such as weighted least squares. In the presence of noise and outliers especially for wide angle stereo the new estimator provides the best results. The LP estimator is based on correspondence of a points to convex polyhedrons. Each points corresponds to a unique polyhedron, which represents its uncertainty in 3D as computed from the stereo pair. Polyhedron can also be computed for 2D data point by using a-priori depth boundaries. The LP estimator is a single phase (no separate outlier rejection phase) estimator solved by single iteration (no re-weighting), and always converges to the global minimum of its error function. The estimator can be extended to include random sampling and re-weighting within the standard frame work of a linear program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...

متن کامل

Combined Non-Linear Pose Estimation from Points and Lines

We present a non-linear camera pose estimator, which is able to handle a combined input of point and line feature correspondences. For three or more correspondences, the estimator works on any arbitrary number and choice of the feature type, which provides an estimation of the pose on a preferably small and flexible amount of 2D-3D correspondences. We also give an analysis of different minimiza...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Presentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem

The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...

متن کامل

A New Approach to Solve Fully Fuzzy Linear Programming with Trapezoidal Numbers Using Conversion Functions

Recently, fuzzy linear programming problems have been considered by many. In the literature of fuzzy linear programming several models are offered and therefore some various methods have been suggested to solve these problems. One of the most important of these problems that recently has been considered; are Fully Fuzzy Linear Programming (FFLP), which all coefficients and variables of the prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000